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ABSTRACT

Machines with enough intelligence to perform autonomous tasks in uncertain environ-

ments are recently under study. Concepts from the fields of Artificial Intelligence. Operations

Research. and Control Theory have been combined to form a unified theory which analytically

describes the design and operation of an Intelligent Machine. A summary of the work. aimed

to formulate analytically the theory of intelligent machines is presented. The functions of an

Intelligent Machine are executed by Intelligent Controls. The Principle of Increasing Precision

with Decreasing Intelligence is used to form a hierarchical structure of the control systems.

Distributed Intelligence in compatible with such a structure when it is used for teams of in-

telligent machines or cooperating coordinators within the machine. The three levels of the

Intelligent Control. e.g. the Organization. Coordination and Execution Levels are described

as originally conceived. New designs as Neural-nets for the organization level and Petri-

nets for the coordination level are also proposed. Application to Intelligent Robots for space

exploration are suggested.

1. INTRODUCTION

In the last fifteen years, several research efforts have been dedicated to the development

of working models for Intelligent Machines as a means to implement human intelligence to

machines (Albus 1975. Meystel 1985. Pao 1986. Zames 1979. etc.).

Saridis proposed in (1977) an analytic approach for the design of intelligent machines.

Def. 1 Intelligent Machines are machines that are designed to perform

anthropomorphic tasks with minimum Interaction with a human operator.
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The function that drives an intelligent machine is called Intelligent Control. Many publications

by Saridis and his colleagues (1977, 1979, 1983, lg85a.b,c. 1988a.b) have attempted to gen-

erate the component of an analytical design methodology. However, since the theory is not

yet complete, there is no comprehensive publication summarizing and integrating the existing

results.

This article is an attempt to summarize the up-to-date research efforts and present a

complete picture of the theory of intelligent controls as a means of implementation of the

intelligent machines.

After a short review of the underlying mathematical theory given in Section 2, the defini-

tion of the pertinent variables describing the intelligent machine are given in Section 3, along

with the basic principle of Increasing Precisi9n with Decreasin_ Inte!liKence. This principle.

though originally conceived as a device for simplification of the structure of the machine, has

proven to be a generic principle that governs the interaction of machine intelligence with the

complexity of its operation. Section 4 discusses the compatibility of hierarchical structures

with the concept of distributed intelligence. Sections 5,6. and 7 describe the analytic function

of the three levels of an intelligent machine while sections 8 and 9 propose application to

robotic systems and give the necessary conclusions.

2. THE MATHEMATICAL THEORY OF INTELLIGENT CONTROLS

Intelligent Machines require control functions in order to perform intelligent functions such

as simultaneous utilization of a memory, learning, or multilevel decision making in response to

"fuzzy" or qualitative commands, Intellifent Controls have been developed by Saridis (1977,

1983) to implement such functions. They utilize the results of cognitive systems research

effectively with various mathematical programming control techniques (Birk & Kelley. 1981).

Cognitive systems have been traditionally developed as part of the field of artificial intel-

ligence to implement, on a computer, functions similar to one encountered in human behavior

(Albus 1975, Minsky 1972. Winston 1977, Nilsson 1969. Pao 1986). Such functions as speech

recognition and analysis, image and scene analysis, data base organization and dissemination,

learning and high-level decision making, have been based on methodologies emanating from

a simple logic operation to advances reasoning as in pattern recognition, linguistic and fuzzy

set theory approaches. The results have been well documented in the literature.

Various pattern recognition, linguistic or even heuristic methods have been used to an-

alyze and classify speech, images or other information coming in through sensory devices

as part of the cognitive system (Birk & Kelley 1981). Decision making and motion control

were performed by a dedicated digital computer using either kinematic methods, like tra-

jectory tracking, or dynamic methods based on compliance, dynamic programming or even

approximately optimal control (Saridis and Lee 1979).



The theoryof Intelligent Control systems,proposedby Saridis (1979) combinesthe pow-

erful high-level decision making of the digital computer with advanced mathematical modeling

and synthesis techniques of system theory with linguistic methods of dealing with imprecise

or incomplete information. This produces a unified approach suitable for the engineering needs

of the future. The theory may be thought of as the result of the intersection of the three major

disciplines of Artificial Intelligence. Operation_ Researc;h and Control Theory (Figure 1). This

research is aimed to establish Intelligent Controls as an engineering discipline, and it plays a

central role in the design of Intelligent Autonomous Systems.

Intelligent control can be considered as a fusion between the mathematical and linguistical

methods and algorithms applied to systems and processes. They utilize the results of cognitive

systems research effectively with various mathematical programming control techniques.

The control intelligence is hierarchically distributed according to the Principle of Increasin_

Precision with Decreasint Intellitence (IPDI). evident in all hierarchical management systems.

They are composed of three basic levels of controls even though each level may contain more

than one layer of tree-structured functions (Figure 2):

1. The organization level.

2. The coordination level.

3. The execution level.

The Organization Level is intended to perform such operations as planning and high level

decision making from Ion¢ term memories. It may require high level information processing

such as the knowledge based systems encountered in Artificial Intelligence. These require

large quantities of knowledge processing but require little or no precision.

The functions involved in the upper levels of an intelligent machine are imitating functions

of human behavior and may be treated as elements of knowledKe-based systems. Actually. the

activities of planning, decision making, learning, data storage and retrieval, task coordination.

etc. may be thought of as knowledge handling and management. Therefore. the flow of

knowledge in an intelligent machine may be considered as the key variable of such a system.

Knowledge flow in an intelligent machine's organization level represents respectively (Fig-

ure 3):

1. Data Handling and Management.

2. Planning and Decision performed by the central processing units.

3. Sensing and Data Acquisition obtained through peripheral devices.

4. Formal Languages which define the software.

Subjective probabilistic models or fuzzy sets are assigned to the individual functions.

Thus. their entropies may be evaluated for every task executed. This provides an analytical

measure of the total activity.

3
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Artificial Intelligence methods also applicable for the processing of knowledge and knowl-

edge rates of the organization level of an intelligent machine have been developed by Meystel

(1985) and his colleagues. Neural-nets have been recently explored as a possible method to

implement the organization level (Saridis, Moed 1988).

The Coordination Level is an intermediate structure serving as an interface between the

organization and execution level.

It is involved with coordination, decision making and learning on a short term memory.

e.g., a buffer. It may utilize lipguistic decision schemata with learning capabilities defined in

Saridis and Graham (1984), and assign subjective probabilities for each action. The respective

entropies may be obtained directly from these subjective probabilities. Recently Petri-nets are

investigated for the same reason (Wang. Saridis 1988).

The Execution Level executes the appropriate control functions. Its performance measure

can also be expressed as an entropy, thus unifying the functions of an "intelligent machine'.

Optimal control theory utilizes a non-negative functional of the states of a system in

the states space, and a specific control from the set of all admissible controls,to define the

performance measure for some initial conditions, representing a generalized energy function.

Minimization of the energy functional yields the desired control law for the system.

For an appropriate density function p(z,u(z,t),t) satisfying Jaynes' Maximum entropy

principle (1957). the entropy H(u) for a particular control action u(z,t), is equivalent to the

expected energy or cost functional of the system (Saridis 1984). Therefore, minimization of

the entropy H(u) yields the optimal control law of the systems.

This statement establishes equivalent measures between information theoretic and Ol>-

timal control problems and unifies both information and feedback control theories with a

common measure of performance. Entropy satisfies the additive property, and any system

composed of a combination of such subsystems can be optimized by minimizing its total

entropy. Information theoretic methods based on entropy may apply (Conant 1976).

Since all levels of a hierarchical intelligent control can be measured by entropies and their

rates, then the optimal operation of an "intelligent machine" can be obtained through the

solution of mathematical programming problems.

An important development of this theory is a structure of the "nested hierarchical" sys-

tems (Meystel. 1986). Even when the hierarchy is not tree-like, still using hierarchy is bene-

ficial since the hierarchy of resolutions (errors per level) helps to increase the elTectiveness of

the system under limited computing power which is important to mobile systems.

The various aspects of the theory of hierarchically intelligent controls may be summarized

as follows:

4
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The theory of intelligent machines may be DOstulated as the mathematical problem of

findinE the riEht seauence of decisions and cQntrols for a system structured according to

the principle of increasinl precision with decreasin_ intelliRence (constraint) such that it

minimi2;es its total entroov.

The above analytic formulation of the "intelligent machine problem" as a hierarchically

intelligent control problem is based on the use of entropy as a measure of performance at all

the levels of the hierarchy. It has many advantages because of the tree-like structure of the

decision making process, and brings together functions that belong to a variety of disciplines.

The complete development of this theory and its integration with the other theoretical issues

of the Intelligent Autonomous System is the main task of this paper.

3. SOME DEFINITIONS AND THE IPDI

3.1 Definitions

It remains to investigate the general concepts of Intelligent Control Systems which per-

tain to the fundamental functions of Intelligent Machines. Such are the notions of Machine

Knowledge. its Rate and Precision.

Def. 2 Machine Knowledge is defined to be the structured information

acquired and applied to remove ignorance or uncertainty about a specific task

pertaining to the Intelligent Machine.

Knowledge is a cumulative quantity accrued by the machine and cannot be used as a variable

to execute a task. Instead. the Rate of Machine Knowledge is a suitable variable.

Def. 3 Rate of Machine Knowledge iS the flow of knowledge through

an Intelligent Machine.

Intelligence is defined by the American Heritage Dictionary of the English Language (1969)

as: IntelliKence is the capacity to acquire and apply knowledge.

In terms of Machine Intelligence. this definition may be modified to yield:

Def. 4 Machine Intell;gence (MI) is the variable (source) which operates

on a data-base (DB) of events to produce flow of knowledge (RK)

One may directly apply the Law of Partition of Information Rates of Conant (1976) to

analyze the functions of intelligence within the activities of an Intelligent Control System.

On the other hand. one may define Precision as follows:

Def. 5 Imprecision is the uncertainty of execution of the various tasks

of the Intelligent Machine.

5
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and

Def. 6 Precision Is the complement of Imprecision, and represents the

complexity of a process.

Analytically, the above relations may be summarized as follows:

Knowledge (K) representing a type of information may be represented as

X = -a - Z-v(K) (1)

where p(K) is the probability density of Knowledge.

From equation (1) the probability density function p(K) satisfies the following expression

in agreement with .laynes' principle of Maximum Entropy (1957)"

I,(I';) = ,-.-x; a = In fx e-1:dz C2)

The Rate of Knowledge R which is the main variable of an intelligent machine with discrete

states is defined over a fixed interval of time T:

K

T

It was intuitively thought (Saridis lg83), that the Rate of Knowledge must satisfy the fol-

lowing relation which may be thought of expressing the principle of Irl_reasin_c Precision

with Decreasinl Intelligence

(MZ): --. CR) (3)

A special case with obvious interpretation is, when R is fixed, machine intelligence is largest

for a smaller data base e.g. complexity of the process. This is in agreement with Vamos"

theory of Metalanguages (1986).

It is interesting to notice the resemblance of this entropy formulation of the Intelligent

Control Problem with the c-entropy formulation of the metric theory of complexity originated

by Kolomogorov (1956) and applied to system theory by Zeroes (1979). Both methods imply

that an increase in Knowledge (feedback) reduces the amount of entropy (c-entropy) which

measures the uncertainty involved with the system.

An analytic formulation of the above principle derived from simple probabilistic relation

among the Rate'of Knowledge, Machine Intelligence and the Data Base of Knowledge, is

presented in the next section. The entropies of the various functions come naturally into the

picture as a measure of their activities.

6
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3.2 THE ANALYTIC FORMULATION OF THE IPDI

In order to formulate mathematically the concepts of knowledge--based systems, one must

consider the state space of knowledge _e with states 81,i - 1,2,...n. They represent the

state of events at the nodes of a network defining the stages of a task to be executed.

Then knowledge between two states is considered as the association of the state sl with

;lnother state si and is expressed as

K_ i _ 1 (4)
_tu_isisi

where wii are state transition coefficients, which are zero in case of inactive transmission.

Knowledge at the state 8_ is the association of that state with all the other active states

s i and is expressed as
1

K, = __ w,i_,si (5)
i

Finally. the total knowledge of a system is considered as

and has the form of energy of the underlying events. The rate (flow) of knowledge is the

derivative of knowledge and for the discrete state space f_, is defined respectively

P_ = _ Rh= K, R = K (7)

where T is a fixed time interval.

Since knowledge was defined as structured information, it can be expressed by a proba-

bilistic relation similar to the one given by Shannon. and expressed for each level by equation

(1):

l,_p(K_)= -a- K, (8)

which yields a probability distribution satisfying Jaynes' Principle of Maximum Entropy (for

E{K} = Const.)

p(K,)= ,-.,-x, ,., =
i

The rate of knowledge is also related probabilistically by considering that K¢ = R/T.

p(R_)= p(P_T)= _-.,-TR, = ,-.,-.,R, (g)

7
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The principle of Increasing Precision with Decreasing Intelligence is expressed probabilis-

tically by

PR(MI, DB) -- PR(R) (10)

where MI is the machine intelligence and DB is the data base associated with the task

to be executed and represents the complexity of the task which is also proportional to the

precision of execution. The following relation is obtained by conditioning and taking the natural

logarithms:

Inp(MI/DB) + lnp(DB) = l.p(R) (11)

Taking the expected value on both sides

H (MIIDB) + HCDB) = HCR) (12)

where H(z) is the entropy associated with z. For a constant rate of knowledge which is

expected during the conception and execution of a task increase of the entropy of DB requires

a decrease of the entropy of/_rI for the particular data base. which manifests the IPDI. If

MI is independent of DB then

H(MZ)+  (DB) = U(R) (13)

In the case that p(]_r 0 and p(D.B) satisfy Jaynes' principle as p(R) does. where

p (MI/DB) = e-"'-_'Mx_"

p(DB) = • -a'-_'Da (z4)

where a; and/_;, i = 2, 3 are appropriate constants.

Then the entropies are rewritten as

-a2 - _2_dIDs --as - _3DB = -al - _,R (z.5)

and if

then

/_2 #3
al=a2+a3 "72=- _ "/3=-

/Jr /zt

"I2MIDa + "1sDB = R (16)

which represents a specific but more explicit version of the Principle of Increasing Precision

with Decreasing Intelligence.

This Principle is applicable both across one level of the Intelligent Hierarchy as well as

throughout the levels of the Hierarchy. in which case the flow R represents the throughput of
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the system in an information theoretic manner. The partition law of information rate applies

naturally to such a system.

The entropy of DB may be related to e-entropy as follows: A system requiring certain

(n) level of precision takes n-times the data base DB required for a simple precision. But

H(nDB) = E{Inn} + E{InDB} (17)

where E{lnn} is the c-entropy associated with the complexity of execution. A case study

demonstrating the validity of the above is given in Saridis and Valavanis (1988).

4. DISTRIBUTED MACHINE INTELLIGENT SYSTEMS

In the real world, distributed systems and hierarchical systems co-exist in harmony. The

human organism is a typical example of this statement.

Distributed Artificial Intelligence (DAI) is a discipline concerned with treating problems

that require multiple solvers in parallel by invoking artificial intelligence techniques (Decker.

1987). When utilized to control intelligent machines working in parallel, it can be interpreted

as Distributed Machine Intelligence (DMI) where the intelligence processing is referred to the

autonomous abilities of the machines involved as with simple hierarchically intelligent control

ease, ($aridis. 1986): This corresponds more to the distributed problem solving process and

may be thought of as composed of two components:

• Distributed Machine Intellkcence

• Control

• Communications.

Distributed Control can be performed in two different ways:

• Control by a meta level

• Control by majority vote.

The first method is an extension of the hierarchical approach where the coordination,

decision making and subtask assignment is deferred to a higher level of inteilTgence imbedded

in the dispatcher of the intelligent machines: (see Fig. 4). The cooperative activities should

be planned, scheduled and sequenced in this device and communicated to the appropriate

machines. Feedback from the environment should be communicated continuously for the

evaluation of the team work performed.

The second method deals with cooperative approach of machines operating in the same

environment and performing tasks that require scheduling and task assignment. Majority

vote may provide the proper planning and sequencing of the various tasks to be performed

in unison by all the intelligent machines involved. The majority vote could be taken in a poll

place equally accessed by al the machine and communicated back to them in the appropriate

sequence.

9
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The communication problem plays a paramount role in distributed machine intelligence.

It may be performed by a large communication network in the case of wide spacially distributed

machines or by a computer bus when dealing with a tightly built system of devices. The main

design considerations of a communication system are:

• The system configuration,

• The protocol, and

• The treatment of uncertainty of information.

The first item deals with the selection of the proper structure of the network. Two types

suitable for the appropriate control categories are

• Star Connection

• Ring Connection.

The second item is essential for the most efficient operation of the system and the

optimization of the information exchange among the intelligent machines. The computer

literature contains many sources of information about protocols as in lampson. Paul and

Siegert (1981).

The third item deals with ability of the communications system to deal with uncertain

and incomplete information. The problem of reliability for accurate and precise transmission

and reception of information is essential. The classical Shannon's information theory methods

are applicable here (Shannon and Weaver, 1963).

Finally, as mentioned earlier, distributed machine intelligence may be applied to coordi-

nate a number of cooperating intelligent machines or to organize a number of coordinators

within the same machine. In both cases, such a structure can work in harmony with the hi-

erarchically intelligent control structure of Saridis (1983). The reason is that the hierarchical

stratification refers to the intelligence of the machine and the IPDI needs only to be general-

ized from a vertical to a horizontal deployment. In other words, the IPDI should be assigned

to all directions of flow of knowledge to represent all the trade-otTs between intelligence and

complexity.

5. THE ORGANIZATION LEVEL AND KNOWLEDGE BASED SYSTEM

The function of the organizer, the highest level of the hierarchy of Intelligent Controls.

is based on several AI (knowledge based) concepts forming the foundations of Machine Intel-

ligence. These concepts translated into probabilistic models form the functions of represen-

tation and reasoning, planning, decision making, long-term memory exchange and learning

through feedback to set up a task in response to some outside command (Fig. 3). The

probabilistic model generated provides the mechanism to select the appropriate task for the

appropriate command. The principle followed here is that instead of task decomposition a

10
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collection of tasks is generated from a list of primitive stored in the memory and matched

against the input command applied.

The organization level algorithm must perform the following functions:

• Receive a command and reason about it. Reasoning and representation associates

dilTerent primitive activities and rules with the received command and evaluates

probabilisticaily each activity.

• Planning which involves operations on the activities. The ordering of the activities

and insertion of repetitive primitive events to complete a plan is accomplished accord-

ing to the selected rules. Transition-matrices (masks) and transition probabilities

are used to order the activities and calculate their total probability.

• Decision Making which selects the most probable plan.

• Feedback which updates the probabilities through learning algorithms after the com-

pletion of the job, after the completion and evaluation of each task.

• Memory exchanges which updates the stored information in the long-term memory.

To specify analytically the functions of the organizer, it is essential to derive the domain

of the operation of the machine for a particular class of problems (Valavanis 1985). Assuming

that the environment is known, one may define the following sets:

The set of commands C = {cl,c2,... ,c,,_} in natural language, received by the machine

as inputs. Each command is compiled to yield an equivalent machine code explained in the

next section.

The t_sk command of the machine which contains a number r_ of independent events.

The events E = {ez,e2,...,e,_} are individual primitive rules or activities e¢ stored in

the long-term memory and representing tasks to be executed. The task domain indicates the

capabilities of the machine.

Activities A. are groups of events concatenated to define a complex task: e.g.. A234 =

{e2, ca, e4}. If the events are ordered," then we have an ordered activity.

A random variable z_e[O, 1] is associated with each individual event e_. If the random

variable z_ is binary (either 0 or 1). it indicates whether an event e_ is inactive or active, in

a particular activity and for a particular command. If the random variables z_ are continuous

(or discrete but not binary) over [0,1]. they reflect a membership function in a fuzzy decision

making problem. At this point, we consider the z_'s to be binary.

Functiqn_ F, are internal operations on the activities A. As such. they are defined in their

right order within the organization level.

a) Machine Representation and Reasoning. R. is association of the compiled command

to a number of activities and/or rules. A probability function is assigned to each

activity and/or rule and the Entropy associated with it is calculated. When rules are

included one has active reasoning (inference engine).

11
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b) Machine Planning. P. is ordering of the activities. The ordering is obtained through

a sparse matrix J_" of O's and l's. which indicate the proper order of the primitive

events.

c) Decision Making. DM. is the function of selecting the sequence with the largest

probability of success.

d) Feedback. FB. is evaluation of the cost functions and updating of the probabilities

associated with each primitive event and activity.

e) Memory Exchange, ME. is retrieval and storage of information from the lonE-term

memory based on selected feedback data from the lower levels after the completion

of the complex task.

An algorithm of the functions of the organizer is given below. The received command

is related to a random word through reasoning that associates the various strings of events

in binary code with appropriate probabilities. Planning and decision making follow, while

feedback provides an off-line upgrading of the probabilities through learning algorithms. Long-

term memory exchange updates the stored information and related probabilities, and provides

the actual job for the coordinators.

The algorithm, which performs a number of sequential functions, is outlined by specifying

the following:

1. The set of user commands C = {ct, c2,... ,c,_;d_ fixed and finite} with associated

probability distribution functions (pdfs) p(c,_), r_ = 1, 2,..., M', sent to the Intelligent

Machine via some channel.

2. The set of classified compiled input commands U = {ul, u2,...,u_ fixed and

finite} with associated pdfs p(ui/c,_),j = 1,2,...,/_r, which are the inputs to the

organization level of Intelligent Machines.

3. The task domain of the Intelligent Machine with the set of independent but not

mutually exclusive disjoint sub-sets of non-repetitive and repetitive primitive events

E = {enr, Er} _- {at, e2,..., aN-I,, e_r-t+t,.., oN; .N" fixed and finite}.

4. The binary valued random variable z_ associated with each e_ indicating if e_ is active

(z_ = 1) or inactive ac_= 0) given a ui. with corresponding pdfs p(x_ - 1/%.) and

p(z_ = 0/%.) respectively.

5. The set of the (2 h" - 1) activities which are groups of primitive events concatenated

together to define a complex task. They are represented by a string of binary random

variables Xj,,_ = (xt,x2,...,x,_),_,m = 1,2,..., (2 _" -1). which indicates which

e_'s are active or inactive within an activity with a pdf P(Xi,n/uj).

6. The set of compatible ordered activities obtained by ordering the primitive events

within each activity and represented by a string of compatible ordered binary random

variable Yi,,_r. where r denotes the rth ordered activity obtained from Xj,n. with a

12
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pdf P(Yj.,_,/ui).

7. The set of compatible augmented ordered activities obtained by inserting repeti-

tive primitive events within appropriate positions of each Yj.,,_, and represented by

Yi,_r(ao). where a° denotes the _th augmented activity obtained from _.,,,, and a

pdf PC_-,_, Cao)/_.,,,).

8. The set of mask matrices Mi,,,,. with associated pdfs p(Mi,_,,./u_) used to obtain

the compatible ordered activities (Yj.,,,,) from the activities (Xi,_).

g. The set of augmented mask matrices Ma-,,_rCao) with associated pdfs

p(Mi,_r(a,)/Ya._,,, ) used to obtain the compatible pdfs p(Mi,,r(a,)/Y_,,_ ) used

to obtain the compatible augmented ordered activities from each Yi-,r.

10. The set of rules for the compatibility and completeness test.

11. The learning mechanism for decision making where the Entropies corresponding to

the total probabilities are compared for minimum value.

12. The Feedback mechanism which updates the probabilities by learning, through an

evaluation of the task execution from the lower levels.

When a user command cn with a pdf p(cn) is sent to the Intelligent Machine. it is received

and classified by the classifier to yield the (classified) compiled input command ui with a pdf

p(ui/cn), which is the input to the organization level.

The organization level formulates complete and compatible plans and decides about

the best possible plan to execute the user requested job. This is done by associating ui

with a set of pertinent activities Xi,, with corresponding probabilities P(Xirr,/ui) (rea-

soning), and by organizing the activities in such a way (planning) to yield complete and

compatible plans: The compatible ordered activities Ya'mr are obtained via the mast ma-

trices Mimr and their associated pdfs are: P(Yi,,_,./ui) = p(Mi_,,./ui)P(Xi,_,/ui). The

compatible augmented ordered activities Y_'mr(a°) are obtained by inserting repetitive prim-

itive events in appropriate positions within each Ya'mr and their corresponding pdfs are:

p(ya.mr(a,)/ya.mr ) = p(._Iimr(a,)/Yimr). P(Yimr/ui). Every incompatible activity and

incomplete plan is rejected. The most probable complete and compatible plan yr is the final

plan that is transferred to the coordination level. (see Figure 4).

Each function has been described in a set theoretic manner and probabilities are assigned

as measures. Entropies H(F(X)) as associated with each function in a straight forward

way. Transmissions of information T(z_ : Xa. ) measure the interdependence between different

functions.

The Entropy function is used to calculate the uncertainty of the activities and ordered

activities.

Assume that there are _q different states of the organizer and that the inputs to the

organizer belong to C. It has been shown that the functions of the organization level obe), a

13
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generalized law of partition of information rates (Conant 1976). According to this law the total

activity rate of the organizer is decomposed into the Throughput Rate (flow of Knowledge).

the Blockage Rate (Decision Making). Coordination Rate (Planning). Internal Decision Rate

(Reasoning and Noise Rate:

F = FT(C: S) + Fa(C : S) + Fc(C : S + FD(C: S) + FN(C : S)

where:

F = the

Fr = the

FB = the

Fc = the

FD = the

FN = the

(18)

total activity rate

throughput rate corresponding to information transfer within the organizer

blockage rate corresponding to Decision Making

coordination rate corresponding to Planning

internal decision making rate corresponding to Reasoning

noise rate corresponding to information when the command C has been already

received.

Learning in the organizer, as well as the entire Intelligent Machine. is obtained through

selective feedback from the lower levels. Feedback in the organization level is applied after the

completion of a whole task. in contrast to real-time feedback provided to the lower levels. The

task is evaluated by cost functions Jo and all the probabilities associated with the organizer

are upgraded by the stochastic approximation algorithm:

Z {Z ; J=_;-1o (19)p(t -t- 1) = p(t) -I- %+,[_ - p(t)]; %+, -- t'-_'; _ = 0 ; otherwise

Convergence of this algorithm has been proven elsewhere (Saridis and Graham 1984).

establishing the learning property of the organizer.

A total Entropy is calculated for each final complete plan. This Entropy includes both

the reasoning and planning uncertainty. The complete ordered activity with the minimum

total Entropy is considered the most likely to execute the job. and is communicated to the

coordination level. (Saridis and Valavanis 1988).

Current research has established the potential of using neural nets to perform the func-

tions of the organizer. A rigorous derivation of the Boltzmann machine and its use to connect

the nodes of the events in the organization level was presented in Saridis and Moed (1988)

and Hinton. Sejnowski (1986).

6. THE COORDINATION LEVEL

The coordination level is an intermediate structure serving as an interface between the

organization and the execution level. It is essential for dispatching organizational information

to the execution level. Its objective is the actual formulation of the control problem associated
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with the most probable complete and compatible plan formulated by the organization level

that will execute in real-time the requested job.

This includes selection of one among alternative plan scripts that accomplish the same

job in different ways according to the constraints imposed by the workspace model and timing

requirements, controlled by the dispatcher (Figure 4).

The coordination level is composed of a specified number of coordinators. Specific hard-

ware. (execution devices) from the execution level, is associated with each coordinator. These

execution devices execute well defnecl tasks when a command is issued to them by their cor-

responding coordinator. (Valavanis 1986). The dispatcher serves as both the communicator

of information from the organization level to the coordinators and on-line exchange of data

among the coordinators. A Petri-net formulation of these activities has been recently proposed

by Wang and Saridis (1988).

The major advantage which results from this association is that the individual functions of

each coordinator may be defined a priori (during the design phase of the Intelligent Machines)

because they are considered to be unmodifiable with time. Thus, they are assumed to be

deterministic functions because the number of parameters involved in each one of them is also

prHpecified.

This structure implies that the coordination level does not have any reasoning capabilities

like the organizer. Its intelligence is related to its ability on how to execute the organizer plan

in the best possible way. The coordination level involves decision making associated with

specific knowledge (information) processing based on the already formulated plan utilizing

Petri-nets (Wang, Saridis 1988)(Peterson 1977).

The functions of the coordination level are defined in terms of the individual functions

of the different coordinators of an Intelligent Machine. i.e. for an Intelligent Robotic System:

(see Figure 4)

1. The Vision System Coordinators (VSC).

2. The Sensor System Coordinator (SSC).

3. The Motion Coordinator(s) (MSC). and.

4. The Gripper(s) Coordinator(s)(GSC).

It is important to clarify at this point that we consider the VSC as a separate coordinator

and not as a part of the SSC. The main reasons for this distinction are: First. Robotic

Vision has become a very important component in modern robotic systems and robotic vision

system are studied and treated separately from all other types of external (and internal)

sensors. Second. the hardware associated with the VSC is different than the one associated

with the SSC. and third, this paper is mainly concerned with the VSC and ignores the details

of operation of the other sensory systems.

Each coordinator, when accessed by the dispatcher performs a pre-specified number
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of different functions. A cost is assigned to each individual function. An accrued cost is

associated with the operation of each coordinator. An overall accrued cost is calculated

in terms of the weighted sum of the accrued costs of the coordinators after the execution

of the requested job. This cost is communicated to the organizer after the completion of

the requested job and is used to upgrade the information stored in the long-term memory

of the organization level. This feedback information (which is sent from the coordination

to the organization level after the completion of the requested job) will be called off-line

feedback information learning. On the other hand. feedback information is communicated to

the coordination level from the execution level during the execution of the requested job. Each

coordinator, when accessed, issues a number of commands to its associated execution devices

(at the execution level). Upon completion of the issued commands feedback information

is received by the coordinator and is stored in the short-term memory of the coordination

level. This information is used by other coordinators if necessary, and also to calculate the

individual, accrued and overall accrued costs related to the coordination level. Therefore.

the feedback information from the execution to the coordination level will be called on-line.

real-time feedback information. More details about the feedback mechanism are given in the

corresponding sections where the functions of each coordinator are explained.

7. THE EXECUTION LEVEL WITH ENTROPY FORMULATION

The cost of control problem at the hardware level can be expressed as an entropy which

measures the uncertainty of selecting an appropriate control to execute a task. By selecting

an optimal control, one minimizes the entropy, e.g.. the uncertainty of execution. The entropy

may be viewed in the respect as an energy in the original sense of Boltzmann. as in Saridis

(lg8S).

Optimal control theory utilizes a non-negative functional of the states of the system

z(t)el_= the state space, and a specific control u(z, t)ef/_zH, nu C L'1= the set of all admissible

feedback controls, to define the performance measure for some initial conditions (zo(to).

representing a generalized energy function, of the form.

._t t!V(xo,to)= (20)
0

where L(z, t, u(z, t)) > O. subject to differential constraints dictated by the underlying process

_= .[Cz, uCz, t)),t; z(to)=zo; zCt{)eM! (21)

with Mj, a manifold in n=. The trajectories of the.system (21) are defined for a fixed but

arbitrarily selected control u(z,t) from the set of admissible feedback controls r/_,.
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In order to express the control problem in terms of an entropy function one may assume

that the performance measure V(xo, to, u(x, t)) is distributed in _/,, according to the probability

density p(u(x,t)) of the controls u(z,t)el"i,. The entropy H(u) corresponding to this density

is defined as

- -/_ p(uC=,t))lnp(u(x,t))dxH(u)
Jt$

bnd represents the uncertainty of selecting a control uCz, t) from all the possible admissible

feedback controls from _,,. The optimal performance should correspond to the maximum

value of the associated density p(u(x,t)). Equivalently. the optimal control u*Cz, t ) should

minimize the entropy function HCu ).

This is satisfied if the density function is selected to satisfy Jaynes' Principle of Maximum

Entropy (1956). e.g.

pC_(x,t))= ce_p{=V(xo,to,_(_,t))} (22)

It was shown by Saridis (1985b) that the expression HCu ) representing the entropy for

a particular control action uCx ,t) is given by

=/" pC_,_(_,t))vC_,t,_C_,t))d_H(u)
,/tJ

E,,{,,(_o,to,,,(x,t))} (23)

This implies that the average performance measure of a feedback control problem correspond-

ink to a specifically selected control, is an entropy function. The optimal control _'(x, t) that

minimizes V(x,t,u(x, t)). maximizes p(x,u(x, t)). and consequently minimizes the entropy

HC,,).

u': E={vC_,,t,u*Cx, t)) }

= ,,,_/o vcx, t,,,C_=,t))pC_,Cx,tl)e:_ (24)

This statement establishes equivalent measures between information theoretic and optimal

control problems and provides the information and feedback control theories with a common

measure of performance.

8. APPLICATION TO ROBOTIC SYSTEMS

The theory of Intelligent Controls has direct application to the design of Intelligent Robots.

The IPDI provides a means of structuring hierarchically the levels of" the machine. Since for

a passive task the flow of knowledge through the machine must be constant, it assigns

the highest level with the highest machine intelligence and smallest complexity (size of data
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base), and the lowest level with the lowest machine intelligence and largest complexity. Such

a structure agrees with the concept of most organizational structures encountered in human

societies. Application to machine structures is straight forward.

Even at the present time there is a large variety of applications for intelligent machines.

Automated material handling and assembly in an automated factory, automated inspection,

sentries in a nuclear containment are some of the areas where intelligent machines have and

Will find a great use. One of the most important applications though is the unmanned space

exploration where, because of the distances involved, autonomous anthropomorphic tasks

must be executed and only general commands and reports of executions may be communicated.

Such tasks are suitable for intelligent robots capable of executing anthropomorphic tasks

in unstructured uncertain environments. They are structured uncertain environments. They

are structured usually in a human- like shape and are equipped with vision and other tac-

tile sensors to sense the environment, two areas to execute tasks and locomotion for ap-

propriate mobility in the unstructured environment. The controls of such a machine are

performed according to the theory of Intelligent Machines previously discussed. (Saridis and

Stephanou. 1977). (Saridis 1983. 1985a. 1985b. 1988a). (Meystel 1985,1986). The three lev-

els of controls, obeying the Principle of Increasing Precision with Decreasing Intelligence. are

implemented with appropriately selected feedback, as shown in Figure 5, for a PUMA 600

robot arm with sensory feedback.

The Boitzmann machine architecture (Saridis and Moed 1988) may be used to imple-

ment the organization level of an intelligent robot by considering the proper interconnection

of primitive events represented by nodes and the coordination level of an intelligent robot

by appropriately connecting the various coordinators to the dispatcher for communications

purposes.

g. CONCLUSIONS

A mathematical theory for intelligent machines was proposed and traced back to its

origins. The methodology was developed to formulate the "intelligent machine', of which an

intelligent robot system is a typical example, as a mathematical programming problem as using

the aggregated entropy of the system as its performance measure. The levels of the machine

structured according to the principl_ of Increasin_ Precision with Decreasin_ Intelli;cenc_ can

adopt performance measures easily expressed as entropies. This work establishes an analytic

formulation of the Principle, provides entropy measures for the account of the underlying

activities, and integrates it with the main theory of "Intelligent Machines'. Optimal solutions

of the problem of the "intelligent machine" can be obtained by minimizing the overall entropy

of the system. The entropy formulation presents a tree-like structure for this decision problem

very appealing for real-time computational solutions.
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